Multivariate forecasting of road traffic flows in the pres- ence of heteroscedasticity and measurement errors
نویسندگان
چکیده
Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors Journal Article How to cite: Anacleto Junior, Osvaldo; Queen, Catriona and Albers, Casper (2013). Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors. Journal of the Royal Statistical Society: Series C (Applied Statistics), 62(2) pp. 251–270.
منابع مشابه
Method of Video-Measurements of Traffic Flow Characteristics at a Road Junction
In the theory of traffic flows the main characteristics are: intensity, speed, and density. They make it possible to use hydrodynamic models. In connection with the development of modern highways and road networks, traffic flows behavior is becoming more and more complex and diverse. In particular, the B.Kerner studies have shown that the laminar solution of hydrodynamic models is poorly corre...
متن کاملForecasting traffic flows in road networks: A graphical dynamic model approach
Congestion on roads is a major problem worldwide. Many roads now have induction loops implanted into the road surface providing real-time traffic flow data. These data can be used in a traffic management system to monitor current traffic flows in a network so that traffic can be directed and managed efficiently. Reliable short-term forecasting and monitoring models of traffic flows are crucial ...
متن کاملForecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for forecasting flows, accommodating multivariate flow time series, while being a computationally simp...
متن کاملThe Open University ’ s repository of research publications and other research outputs Forecasting multivariate road traffic flows using Bayesian dynamic graphical models
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for forecasting flows, accommodating multivariate flow time series, while being a computationally simp...
متن کاملresearch publications and other research outputs Forecasting multivariate road traffic flows using Bayesian dynamic graphical models
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for forecasting flows, accommodating multivariate flow time series, while being a computationally simp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012